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1. Introduction
Perceptual inference is performed in the brain by combining pre-
viously learned knowledge and recent sensory information. The
mechanism that performs this computation is termed the recog-
nition model. Theoretical work has shown that good inference is
only possible if the recognition model does a good job at invert-
ing the generative model of the world: its low and high order
statistical structure.
The Helmholtz machine (Hinton et al., 1995) suggests how such
a recognition model can be constructed and trained using lo-
cal computations. The aim of this project is to implement the
Helmholtz machine in a network of model conductance based
spiking neurons and experimentally supported synaptic plastic-
ity rules.
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The simplest Helmholtz machine is composed of binary stochas-
tic units arranged in a bottom layer~B and a top layer~T. These
two layers are interconnected with two separate sets of connec-
tions (with weights ~wG and ~wR) creating two independently
functioning networks. The bottom-up connections implement
the recognition model used for inference. The top-down connec-
tions implement the generative model.

2. Learning using Wake-Sleep algorithm
~wG and ~wR are learned in two phases:

• Wake: The bottom layer is activated using sensory data,
and the recognition network is used to infer the activities
in the top layer. The generative model is then used to
reconstruct the sensory data given the inferred activity in
the top layer. The error in this reconstruction is used to
train the generative weights ~wG.

• Sleep: The top layer is activated spontaneously (or from
activity in the higher areas), and the generative model is
used to generate fictitious sensory activity in the bottom
layer. The recognition network is then used to infer the ac-
tivities in the top layer given this fictitious sensory activity.
The error in this inference is used to train the recognition
weights ~wR.

In general, during both phases some neuronal activity ry is ad-
justed to match some target neuronal activity rz by changing the
connection strengths w while taking the input activity rx into
account. The simplest rule that can accomplish this is the delta
rule:

∆w = λrx(rz − ry)
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3. Delta rule network
Previous efforts to model the delta rule required the use of dis-
crete neuronal firing rates or relied on a special timing relation-
ship between the target and output neuronal activities. The
network below improves on those efforts and implements the
delta rule with simultaneous, continuously varying firing rates.
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The network is composed of interconnected pools of 10-20
spiking neurons each. Plastic inhibitory connections follow an
anti-Hebbian synaptic plasticity rule similar to one characterized
by Haas et al. (2006) in the entorhinal cortex.

4a. Delta network results
25 separate networks were trained with a steady input, but
different initial plastic inhibitory weights and target rates. rm
approaches the rate of ≈27 Hz in all networks after 40 seconds
of stimulus presentation:

10

35

60
60

20

40

50

30

1 2 3
wstart

rm after

rm before

rz

10

35

60

1 2 3

rz

60

20

40

50

30

Hz

Hz

4b. Delta network results
Initially the ry does not depend on rz, but after training it matches
it closely (given steady input rates):
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Weight changes follow the initial rm values and converge to a
steady state after ≈20 seconds of stimulus presentation:
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5. Helmholtz machine network
The full Helmholtz machine can be built by linking multiple
delta-rule networks (each one functioning as a stochastic unit)
together. Certain connections need to be inactivated during the
different phases of the Wake-Sleep algorithm through either a
neuro-modulatory signal, or silencing of the pre-synaptic neu-
rons through inhibition.
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6. Helmholtz machine network results
A network with 16 bottom units and 4 top units with all-to-all
connectivity was run in the wake phase to test its ability to recon-
struct the sensory input. Before training the reconstruction does
not resemble the sensory input, but after 50 seconds of stimulus
presentation the reconstruction quality markedly improves.
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7. Conclusions
1. The proposed delta rule network seems very capable at

implementing the computation in spite of the non-ideal
behavior of the plasticity rule and spiking neurons.

2. Multiple delta rule networks combined into a Helmholtz
machine seem capable of implementing the wake phase
of the Wake-Sleep algorithm. Future work will examine if
alternating sleep and wake configurations of the network
produces correct learning of the recognition weights.
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